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where

\,1=guide wavelength of TE;,"

X =distance from the center of the slot to the end
plate of the cavity
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[, w=length and width of the slot which has an ap-
proximately elliptic shape (I>>w)
ty=depth of the slot
a, b=inner dimensions of the rectangular guide
R =radius of the cavity

R’ =radius of the output circular guide which corre-
sponds to the inside radius of the slidable pipe
in Fig. 5(a)

Ao =guide wavelength in the output circular guide
g
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radius of the circular hole in coupling plate “2”
p=position of the circular hole [see Fig. 5(b)]
t,=depth of the circular hole.
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Dispersion Characteristics of an Atrray of
Parasitic Linear Elements

E. R. NAGELBERG, MEMBER, IEEE, AND J. SHEFER, SENIOR MEMBER, IEEE

Abstract—In this paper we study the properties of a transmission
line comsisting of an infinite array of conducting cylinders, placing
emphasis on the dispersion characteristics of the lowest order slow
wave mode. We present experimental results for the variation of
phase velocity with frequency, and then, using a method of parameter
estimation, determine the element current distribution which best
explains these observations. Assuming this distribution to be of

the form
L B
) = v [1 — <7 > ]
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we find that, for a given size of element, there is a value of v which
gives very good agreement for the variation of phase velocity over
the frequency range of interest.

I. INTRODUCTION

N THE FOLLOWING we study certain character-
I[ istics of an infinitely long, uniform array of conduct-

ing cylinders, as illustrated in Fig. 1. This structure
can support a guided wave which travels along the axis
with a phase velocity less than the velocity of light. The
propagation characteristics of this slow wave are of in-
terest for two reasons. First, the results may be applied
to analysis of the Yagi antenna, which can be thought of
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as a slow wave structure terminated in free space [1].
Furthermore, it has been observed that such an array
functions very well as a microwave transmission line
[2] with frequency and loss characteristics comparable
to a conventional waveguide.

Referring again to Fig. 1, we denote the direction of
propagation as the g direction, with transverse coor-
dinates labeled x and y, the x direction being. parallel to
the elements. The pertinent geometrical parameters are
the element half-length %, the cylinder radius a, and the
interelement spacing d.

/Nf danng
Awg/ jz/

Array of parasitic elements showing coordinate system.

Fig. 1.

It is clear that the characteristics of this array will be
a function of the element current distributions. These
are very difficult to determine, either analytically or
experimentally, so that in previous analyses of this
structure [1], [3], the calculations have been based on
some apriori assumption for the current. An example of

such an assumed wvariation would be the #“shifted
cosine” distribution,
) = (cos kx — cos lah) M
x) = —— e )|
J Jo 1 — cos &k

which is the zero-order solution to Hallen’s integral
equation for a single thin linear antenna [1], [4].

In what follows we describe an approach in which we
use the measured dispersion characteristics of the array
in order to deduce the element current distribution.
This is carried out out by a method of parameter es-
timation in which we utilize a digital computer to de-
termine that member of a one-parameter family of cur-
rent distributions which best predicts the observed
variation of phase velocity of the slow wave as a func-
tion of frequency. This set of curves is chosen to be of

the form
i3 ) =j0[1_<lzl>~] )

where the parameter ¥ has been introduced to account
for the change in current distribution with element
thickness. We will show that for a given size of element
there exists a value of v which gives very good agree-
ment over the frequency range of interest.

The paper is organized as follows. In Section II we
present the basic analysis and derive the dispersion
equation for the current distribution of (2). Section 111
describes the experimental techniques used for the
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phase velocity measurements, together with the results
of estimating = for cylinders with different radii. Then,
in Section IV, we give an approximate analysis of the
dispersion equation, corresponding to the case where
the slow wave velocity is close to the free space velocity.

The {formulas will be expressed in terms of ration-
alized MKS units, using the (suppressed) harmonic
time dependence e~%?,

II. DERIVATION OF THE DISPERSION EQUATION

As the guided wave propagates along the array, cur-
rents are induced in the elements, the current in any
element differing from that in its nearest neighbors only
by the phase factor %4, where $ is the slow wave propa-
gation constant. The current density corresponding to
the nth element is therefore

Jao(%, 3, 2) = exj(2)e#(y)8(z — nd) ©)

where e, is a unit vector in the x direction and j(x) is
the amplitude distribution function. In using a delta
function dependence on y and 2z we make the reasonable
assumption that the contribution to the electromag-
netic fleld due to each element may be lumped in an
equivalent filamentary current located on the axis of
the cylinder. The total current J is the sum over all
elements and is given by

&7 (#)3(y) % e 5(z — nd). (4

n=—00

+o0

fr=—00

The vector potential A may then be calculated using the
free space Green’s function, with the result that!

Z e1ﬁnd

7rn——oo

A(x7 ) Z) =

f“ ., . explik V(e — )2+ 32+ (3 — nd)?| i (3)
L N =Dt Gl

In order to elicit the guided wave character of the
field, we next transform the vector potential into its spa-
tial frequency representation. This equivalent descrip-
tion is obtained from (5) by applying the Poisson sum-
mation formula [5]

jE_ fnd) = ZE (=5 ©

where & denotes the exponential Fourier transform of
the function f; i.e.,

+wf (u)ye=%“du. (7N

—x

5@ =

1 The Lorentz gauge is used throughout,
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In particular, for the function appearing in (5), namely

expliBu-+ik \/(x—x})2+(y—y’)2+ (3—u)?]

N ="
it is found that [6]
F(5) = 2evet Kol v/(x = F)TF (7 = 3)9),
— —72: <arga < % 9)

where K, denotes the modified Bessel function of the
second kind and « is given by
a=+V{B-—F. (10)

We thus obtain the spatial frequency representation for
the vector potential,

Mo I
A(x’ ¥, Z) = €z 2 6iﬁz Z 8—i(2m7r/d)
i

fh
2’ =—h

Mm=—o0

F@) Kolam v/ (x — o) + y2]ds’, (11)

where

(12)

Observe that the right-hand side of (11) has the form
predicted by Floquet’s theorem [17] since it consists of
a traveling-wave term e® multiplied by a complex
periodic function with the same period as the structure.
Also to be expected is the appearance of the modified
Bessel function K, which decreases exponentially at
large distances, describing a bound wave with no
energy flow in the transverse plane. Of course, this re-
quires that «, >0, which falls within the restriction of
9).

The electric field may be derived from the vector po-
tential using the familiar formula

1
E = jwA 4 —k*z— v(v-A). (13)

In particular, since A has only one component, A,, the
electric field parallel to the elements, E,, is given by

1 6‘~’Ax>
B oa )’
We then substitute (11) into (14) and integrate by parts
twice, taking advantage first of the symmetry of K,
with respect to x and x’, and second of the fact that the

current distribution j(x) vanishes at the ends of the ele-
ments [8]. The result for E, is that

B = i (Ax + (14)
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Kolam v/ (x — )2 + y2lda’.  (15)

Setting E,=0 on the elements results in an integral
equation involving j'(x) + &%, in which the propagation
constant B appears as a parameter. This equation is
conveniently derived by transforming to a cylindrical
coordinate system (p, ¢, x) whose axis coincides with
the element located at =0, as indicated in Fig. 2. The
two coordinate systems are related by

= p COS ¢

(16)

%z =p sin ¢

with x common.

Fig. 2. Element located at z=0 showing local coordinate

representation.

The boundary conditions may then be satisfied by
setting | E,] =0 at p=a. Clearly it follows that the elec-
tric field must vanish on all the elements, since the field
amplitudes are periodic in the z direction with period d.
The resulting integral equation, taking into account
the even symmetry of j(x), is given by

o0
Z e—i(@mrid)a sin “’j'(h) [Ko(am \/(x — 7)% F a? cos? ¢)

m=—c0

+Kolan v/ (@ F B)? + a® cos? ¢) ]
+h
B f [ () + k()]
—h

- Kolom v/ (® — 2")2 + a? cos? ¢)da’ = 0,

—h<x< + % 0< ¢ <27 a7
This equation could, in principle, be solved to vield the
correct current density j(x) and propagation constant (.
However, since the complexity of (17) appears to pre-
clude any straightforward solution for the current
density, several simplifications are suggested.

First, as mentioned earlier, we assume a solution to

(17) of the particular one-parameter form
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T (laly

i =i[t=(5) ] 19)

h

where v is yet to be determined. The class of distribu-
tions described by (18) includes many types which one
would be led to assume as trial functions. These range
from the triangular distribution, corresponding to y=1,
to the uniform distribution, which is the limiting form
of (18) as v becomes very large. The parabolic case, v
=2, is a good approximation, at least over the fre-
quency range of interest here, to the so-called “shifted
cosine” of (1).

As a further simplification, we satisfy the boundary
condition at only one point on each element, the point
designated as P in Fig. 2, having the coordinates
x=vy=0, 2=a. Since ]Exl is an even function of x, y,
and z, it follows that

V|E| =0 at a=9=3=0. (19)

Therefore, by setting |Ez =0 at P, we approximately
satisfy this boundary condition at neighboring points on
each element, both in the axial and peripheral direc-
tions.

Setting x=y=0, 2=« in (13) and incorporating the
assumed current distribution of (18), one can then
derive the appropriate dispersion relation, which in this
case is the characteristic equation for the propagation
constant 8. However, considerable complexity in the
calculation can be avoided by exploiting the relative
values of various geometrical parameters and wave-
lengths for the particular array and frequencies which
are of interest. We shall thus assume for our purposes
that

Ba <K 1, (20)
anh>1,  |m| =21, (21)

and
Bd K 2=, (22)

in which case the characteristic equation may be written
as

5_21-(”)0) - Eg I(”y’Y) _MI(M)'Y_ 2)
u urtt !
+yKo(u) — A(y) =0 (23)
where
E=kh
? 2
yi- ()
c
u=£ (24)

In (24), k is the free space wavenumber, and the ratio
v/c is the ratio of the phase velocity of the slow wave to
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the velocity of light. The function I(u, ») is a weighted
integral of the modified Bessel function defined as

I(u,v) = fux"Ko(x)dx. (25)

The dependence on the element radius ¢ and interele-
ment spacing d is contained in the term A(y) which is
defined as

AQy) = y(y — 1)272 <%h>7_1r2(7; 1>

plty

where I'(u) denotes the gamma function.

The roots of this dispersion equation were obtained
by digital computer using an algorithm known as the
bisection method [9]. This is an iterative procedure for
establishing the interval containing the solution, to
whatever degree of accuracy is required. The weighted
integrals of the modified Bessel function, defined in
(25), were determined by using a rapidly converging
expansion in powers of #, thus taking advantage of the
fact that # <1.

III. MEASUREMENT OF PHASE VELOCITY

The variation of v/c as a function of frequency was
determined experimentally by measuring the wave-
length of the guided wave with the arrangement repre-
sented in Figure 3. The array was excited by a horn and
turned through a bend of 180°, in the plane perpendicu-
lar to the elements, before entering the measurement
section. This section consisted of a straight array of ap-
proximately 250 elements supported by a polyethelene
tube. It was observed that the tube alone would not
support any guided wave over the frequency range of
interest, so that it may be considered to be transparent.
The array was shunted by a highly reflective disk. The
disk diameter was large enough so that almost all the
power in the guided wave was intercepted, the result
being a well-defined standing-wave pattern. The pur-
pose of the 180° bend was to prevent any direct horn
radiation from interfering with the measurements.
With this arrangement the standing-wave ratios were
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often as high as 40 dB, and the variance of wavelength
measurements was well within the repeatability, indi-
cating a single mode of propagation.

The measured values of v/c as a function of frequency
are shown in Fig. 4 for arrays with an element length
2k of 1.5 cm and an interelement spacing d of 0.64 cm.
The frequency range was between 5800 and 7000 Mc/s,
the different sets of points corresponding to arrays of
cylinders with different radii, as indicated. Superim-
posed on the experimental points are the theoretical
values calculated from (23), using the particular values
of ¥ which give what appears to be the best agreement
with the measurements. The precision with which these
values may be determined is attributed to the depen-
dence of 8 on the second derivative of the current dis-
tribution, as noted earlier. It is significant, in view of
this critical relationship between current density and
propagation constant, that the assumed distribution of
(18) accurately predicts the variation of phase velocity
with frequency over the entire range of interest.

The discrepancies at the higher frequencies may be
attributed largely to the failure of the approximation
Bd<<2, since the wavelength of the slow wave may no
longer be considered very large compared to the inter-
element spacing d. In addition, one must recognize that
the actual current distribution, to which (18) is an ap-
proximation, also changes as the frequency is increased,
placing a definite limitation on the range over which the
assumed current distribution can be used.

In Figure 5 we have plotted the variation of ¥ with
element radius, normalized to the half-length %. Our
conjecture, which is made by analogy with a single iso-
lated element [4], is that v depends primarily on a/h,
so that if a similar curve were plotted for a different
interelement spacing, it would be almost coincident
with the one shown here. The variation is essentially
linear, with v increasing from a value of approximately
two for very thin elements. Since, over this frequency
range, the parabolic distribution (with y=2) is very
close to the so-called shifted cosine distribution noted in
(1), there is a consistency with previous research on the
properties of thin linear antennas. We note also that v
is an increasing function of element radius, which
means that thicker elements have a more uniform cur-
rent distribution near the center with a steeper decrease
to zero near the ends. This is to be expected, since for
thicker elements the larger surface area at the ends will
carry a correspondingly larger total charge. In using an
equivalent filamentary element, we would then expect a
larger effective linear charge density near the ends and,
from the continuity equation.

97
— —dwp = 0,
ax

(27)

a larger slope in the current distribution.
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IV. AN APPROXIMATE ANALYSIS RELATED
TO YAGI ANTENNAS

In this section we derive an approximate solution to
the dispersion equation for the limiting case of v/c=~1.
This regime is of particular interest in the wave theory
analysis of Yagi antennas since the closer v/c is to unity,
the more loosely bound will be the slow wave and the
larger the antenna “aperture.” The result is based on
the small argument behavior of K(x), which is given by

[8]
Ko(x) = — log(Cx)[1 + O(«?)] (28)
where log C is related to Euler’s number, E~0.5772
- - -, by the expression [10]
log C = E — log 2.

Using this approximate representation for K, in (23),
we determine the root « as

1
4 = exp {0.11593 — 7;
0 £ 1}
| 4q) + P 29
[ e S S sy N | S

where the quantities on the right-hand side have been
defined earlier,

In Fig. 6 we have compared approximate and exact
solutions to the dispersion equation, for the thinnest
element, ¢ =0.0127 cm. It is clear that v/c need not be
significantly less than unity before there is a noticeable
disagreement. This is due to the dependence of v/c on #,
which is such that # increases so rapidly as v/c decreases
that the logarithmic approximation to K, quickly be-
comes inadequate. Nevertheless, (29) can be useful in

.00

APPROXIMATE FORMULA
~L/ FOR r=2.15
=~

~

EXACT o
VALUES FOR 7=2.15
.90
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L 1 1 1 1 1
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FREQUENCY IN MC

PHASE VELOCITY/FREE SPACE VELOCITY

.85

Fig. 6. Evaluation of approximate solution to dispersion equation
for thinnest element, a/h=.02,
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estimating v/c or providing a starting point for a more
accurate calculation.

V. SuMMARY AND CONCLUSIONS

We have considered the characteristics of the lowest
order slow wave which can propagate along an infinite
array of parasitic linear elements. The investigation is
empirical in the sense that we have assumed a model for
the element current distribution including an undeter-
mined parameter, which is later adjusted to give the
best agreement between theoretical and measured val-
ues for phase velocity as a function of frequency.

We observe, just as in the case of linear antennas [3],
that while the shifted cosine current distribution may
be adequate to describe the behavior of very thin ele-
ments, a more uniform current is necessary for thicker
cylinders in order to obtain agreement with the experi-
mental results.

This is not to say that the current density departs
very significantly from the parabolic distribution v =2,
even for the thickest elements, since the largest value of
v was approximately v =~ 2.5. However, since the propa-
gation constant depends on the second derivative of
j(x), small errors become amplified in the estimate of §.
We have, in this approach, exploited this behavior and,
starting with accurate results for B, we have used the
sensitivity to precisely determine the best one-parame-
ter estimate for the current density.
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