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where

1,1 = guide wavelength of TEIoD

X = distance from the center of ithe slot to the end

plate of the cavity

3

Ml =

“(l”’:--’)

41 “

w

a!,= 2.72,3; {’l - (:)

1, w = length and w-idth of the slot which has an ap-

proximately elliptic shape (Z>>w)

h =depth of the slot

a, b = inner dimensions of the rectangular guide

R = radius of the cavity

R’= radius of the output circular guide which corre-

sponds to the inside radius c)f the slidable pipe

in Fig. 5(a)

A,,’ = guide wavelength in the output circular guide

M2 = :7’3,.2=3,200; 44.706:)

~ = radius of the circular hole in coupling plate ‘L2”

p== position of the circular hole [see Fig. 5 (b)]

tz=depth of the circular hole.
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Dispersion Characteristics of an Array of

Parasitic Linear Elements

E. R. NAGELBERCr, MEMBER, IEEE, AND J. SHEFER, SENIOR MEMBER, TEEE

Absfracf—In this paper we study the properties of a transmission

line consisting of an infinite array of conducting cylinders, placing

emphasis on the dispersion characteristics of the lowest order slow

wave mode. We present experimental resuks for the variation of

phase velocity with frequency, and then, using a method of parameter

estimation, determine the element current (distribution which best

explains these observations. Assuming this distribution to be of

the form

‘(’;7) “+(%9’1
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we find that, for a given size of element, there is a Vidue of ~ which

gives very good agreement for the variation of phase velocity over

the frequency range of interest.

I. INTRODUCTION

I

N THE FOLLOWING we study certain character-

istics of an infinitely long, uniform array of conduct-

ing cylinders, as illustrated in Fig. 1. This structure

can support a guided wave which travels along the axis

with a phase velocity less than the velocity of light. The

propagation characteristics of this slow wave are of in-

terest for two reasons. First, the results may be applied

to analysis of the J’agi antenna, which can be thou~ht of



392 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES AUGUST

as a slow wave structure terminated in free space [1].

Furthermore, it has been observed that such an array

functions very well as a microwave transmission line

[2] with frequency and loss characteristics comparable

to a conventional waveguide.

Referring again to Fig. 1, we denote the direction of

propagation as the z direction, with transverse coor-

dinates labeled x and y, the x direction being. parallel to

the elements. The pertinent geometrical parameters are

the element half-length h, the cylinder radius a, and the

interelement spacing d.

Fig. 1. Array of parasitic elements showing coordinate system.

It is clear that the characteristics of this array will be

a function of the element current distributions. These

are very difficult to determine, either analytically or

experimentally, so that in previous analyses of this

structure [1], [3], the calculations have been based on

some apriori assumption for the current. An example of

such an assumed variation would be the ‘(shifted

cosine” distribution,

(COSkX —COSkh
j(x) = jo

)I–coskh ‘
(1)

which is the zero-order solution to Hallen’s integral

equation for a single thin linear antenna [1], [4].

In what follows we describe an approach in which we

use the measured dispersion characteristics of the array

in order to deduce the element current distribution.

This is carried out out by a method of parameter es-

timation in which we utilize a digital computer to de-

termine that member of a one-parameter family of cur-

rent distributions which best predicts the observed

variation of phase velocity of the slow wave as a func-

tion of frequency. This set of curves is chosen to be of

the form

[ (91j(x; -y) = jo 1 – (2)

where the parameter ~ has been introduced to account

for the change in current distribution with element

thickness. We will show that for a given size of element

there exists a value of 7 which gives very good agree-

ment over the frequency range of interest.

The paper is organized as follows. In Section II we

present the basic analysis and derive the dispersion

equation for the current distribution of (2). Section 111

describes the experimental techniques used for the

phase velocity measurements, together with the results

of estimating ~ for cylinders with different radii. Then,

in Section IV, we give an approximate analysis of the

dispersion equation, corresponding to the case where

the slow wave velocity is close to the free space velocity.

The formulas will be expressed in terms of ration-

alized M KS units, using the (suppressed) harmonic

time dependence e–iut.

II. DERIVATION OF THE DISPERSION EQUATION

As the guided wave propagates along the array, cur-

rents are induced in the elements, the current in any

element differing from that in its nearest neighbors only

by the phase factor ei~d, where ~ is the slow wave propa-

gation constant. The current density corresponding to

the wth element is therefore

Jn(x, y, z) = e.j(z)eiWl(y)f3(z – d) (3)

where ez is a unit vector in the x direction and j(x) is

the amplitude distribution function. In using a delta

function dependence on y and z we make the reasonable

assumption that the contribution to the electromag-

netic field due to each element may be lumped in an

equivalent filamentary current located on the axis of

the cylinder. The total current J is the sum over all

elements and is given by

The vector potential A may then be calculated using

free space Green’s function, with the result thatl

~ e,,.,A(x, y, z) = e.~ =_
ncc

“s
+h exp[ik V’(X — cc’)z + y2 + (z – nd)z]
, j(x’) dx’.

z c—h <(z – x’)’+ y’+ (z – ml)’

In order to elicit the guided wave character of

field, we next transform the vector potential into its spa-

tial frequency representation. This equivalent descrip-

tion is obtained from (5) by applying the Poisson sum-

mation formula [5]

(4)

the

(5)

the

(6)

where s denotes the exponential Fourier transform of

the function f; i.e.,

* +m

J _w

1 The Lorentz gauge is used throughout,
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In particular, for the function appearing in (5), namely

f(u) =
exp[ibu+ik v’(x-x;)z+ (y-y ’)z+(z-u)z]

<(x– J’)’+ (y–y’)’+(z–zL)’
, (8)

it is found that [6]

S(f) = 2e’@e;@Ko(a<(x – d) 2 .+ (y – y’) 2,,

n-
—— <arga<$

2
(9)

where K. denotes the modified Bessel function of the

second kind and a is given by

a = <(/? — f)z — k~. (lo)

We thus obtain the spatial frequency representation for

the vector potential,

“sh

j(x’)lro[am~~x– a+)’ + y’](h’ , (11)
x,=—h

ITrhere

(12)

Observe that the right-hand side of (11) has the form

predicted by Floquet’s theorem [17] since it consists of

a traveling-wave term e@ multiplied by a complex

periodic function with the same period as the structure.

Also to be expected is the appearar[ce of the modified

Bessel function Ko, which decreases exponentially at

large distances, describing a bound wave with no

energy flow in the transverse plane. Of course, this re-

quires that am> O, which falls within the restriction of

(9).

The electric field may be derived from the vector po-

tential using the familiar formula

E = i(JA +:v(voi4). (13)

In particular, since A has only one component, A., the

electric field parallel to the elements,, E,, is given by

(14)

Y1’e then substitute (11) into (14) and integrate by parts

twice, taking advantage first of the symmetry of K.

with respect to x and #, and second of the fact that the

current distribution j(x) vanishes at the ends of the ele-

ments [8]. The result for E. is that

—icq.q
Ez=— e,jl. ~ e-@nr/d)~f(zf)

2rk2d m=-.

f

+h
— _h [j’’(d)+ Wj(i)]

Ko[am V’(X – i)2 + jp]dx’. (15)

Setting Ez = O on the elements results in an integral

equation involving j’1 (x) + k2j, in which the propagation

constant ~ appears as a parameter. This equation is

conveniently derived by transforming to a cylindrical

coordinate system (p, ~, x) whose axis coincides with

the element located at z = O, as indicated in Fig. 2. The

two coordinate systems are related by

with x common.

y=pcos+

z=psin~ (16)

x

AP

P

+
z

Y

Fig. 2. Element located at z= O showing local coordinate
representation.

The boundary conditions may then be satisfied by

setting I E.\ = O at p = a. Clearly it follows that the elec-

tric field must vanish on all the elements, since the field

amplitudes are periodic in the z direction with period d.

The resulting integral equation, taking into account

the even symmetry of j(x), is given by

~ e-i(2mT,Ci )C sin @j’(k) [Ko(wm <(x — /2)2 + a2 cosz ~)

m=—.

+Ko(am V’(X + h)z + a’ COS2~)]

f

~h
— _, [j’’(x’) + k’j(x’)]

. Ko(am <(~ – #)’ + az COS2@)dx’ = 0,

–?a<x<+h o<c$<27r. (17)

This equation could, in principle, be solved to yield the

correct current density j(x) and propagation constant ~.

However, since the complexity of (17) appears tc) pre-

clude any straightforward solution for the current

density, several simplifications are suggested.

First, as mentioned earlier, ~ve assume a. solution to

(17) of the particular one-parameter form
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“X’=’”[l-(W1
(18)

where ~ is yet to be determined. The class of distribu-

tions described by (18) includes many types which one

would be led to assume as trial functions. These range

from the triangular distribution, corresponding to ~ =1,

to the uniform distribution, which is the limiting form

of (18) as T becomes very large. The parabolic case, v

=2, is a good approximation, at least over the fre-

quency range of interest here, to the so-called “shifted

cosine” of (l).

As a further simplification, we satisfy the boundary

condition at only one point on each element, the point

designated as P in Fig. 2, having the coordinates

x=y=O, z=a. Since I E.1 is an even function of x, y,

and z, it follows that

VI-EZI=O at x=y=z=O. (19)

Therefore, by setting I Ez ) = O at P, we approximately

satisfy this boundary condition at neighboring points on

each element, both in the axial and peripheral direc-

tions.

Setting x = y = O, z =a in (15) and incorporating the

assumed current distribution of (18), one can then

derive the appropriate dispersion relation, which in this

case is the characteristic equation for the propagation

constant ~. However, considerable complexity in the

calculation can be avoided by exploiting the reIative

values of various geometrical parameters and wave-

lengths for the particular array and frequencies which

are of interest. We shall thus assume for our purposes

that

Pa<< 1, (20)

ffmh >> 1, Iml >1, (21)

and

~d << 2ir, (22)

in which case the characteristic equation may be written

as

+~KO(u) – A(7) = O (23)

where

~=kh

(24)

—
c

In (24), k is the free space wavenumber, and the ratio

vjc is the ratio of the phase velocity of the slow wave to

the velocity of light. The function 1(u, V) is a weighted

integral of the modified Bessel function defined as

sIt

1(24,v) = x’ir”(x)d$. (25)
o

The dependence on the element radius a and interele-

ment spacing d is contained in the term A (~) which is

defined as

/l(’y) = ~(’y – 1)27-Z
GYrf+)

27ra

()
Cos ?2 —

5
d

?2=1 f~v– 1

“2(310’[2-2c0s(?)l
+’2(%2’’2(%

27ra()Cos ‘n —

5 d
(26)

.=l xl+?

where r(p) denotes the gamma function.

The roots of this dispersion equation were obtained

by digital computer using an algorithm known as the

bisection method [9]. This is an iterative procedure for

establishing the interval containing the solution, to

whatever degree of accuracy is required. The weighted

integrals of the modified Bessel function, defined in

(25), were determined by using a rapidly converging

expansion in powers of z.~, thus taking advantage of the

fact that z~<1.

III. iMEASUREMENT OF PHASE VELOCITY

The variation of v/c as a function of frequency was

determined experimentally by measuring the wave-

length of the guided wave with the arrangement repre-

sented in Figure 3. The array was excited by a horn and

turned through a bend of 180°, in the plane perpendicu-

lar to the elements, before entering the measurement

section. This section consisted of a straight array of ap-

proximately 250 elements supported by a polyethylene

tube. It was observed that the tube alone would not

support any guided wave over the frequency range of

interest, so that it may be considered to be transparent.

The array was shunted by a highly reflective disk. The

disk diameter was large enough so that almost all the

power in the guided wave was intercepted, the result

being a well-defined standing-wave pattern. The pur-

pose of the 180° bend was to prevent any direct horn

radiation from interfering with the measurements.

With this arrangement the standing-wave ratios were
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often as high as 40 dB, and the variance of wavelength

measurements was well within the repeatability, indi-

cating a single mode of propagation.

The measured values of v/c as a function of frequency

are shown in Fig. 4 for arrays with an element length

212 of 1.5 cm and an interelement spacing d of 0.64 cm.

The frequency range was between 5800 and 7000 file/s,

the different sets of points corresponding to arrays of

cylinders with different radii, as indicated. Superim-

posed on the experimental points are the theoretical

values calculated from (23), using the particular values

of ~ which give what appears to be the best agreement

with the measurements. The precision with which these

values may be determined is attribllted to the depen-

dence of P on the second derivative of the current dis-

tribution, as noted earlier. It is significant, in view of

this critical relationship between current density and

propagation constant, that the assumed distribution of

(18) accurately predicts the variation of phase velocity

with frequency over the entire range of interest.

The discrepancies at the higher frequencies may be

attributed largely to the failure of the approximation

fld<<2r, since the wavelength of the slow wave may no

longer be considered very large compared to the inter-

element spacing d. In addition, one must recognize that

the actual current distribution, to which (18) is an ap-

proximation, also changes as the frequency is increased,

placing a definite limitation on the range over which the

assumed current distribution can be used.

In Figure 5 we have plotted the variation of -y with

element radius, normalized to the half-length h. Our

conjecture, which is made by analogy with a single iso-

lated element [4], is that -y depends primarily on a/h,

so that if a similar curve were plotted for a different

interelement spacing, it would be almost coincident

with the one shown here. The variation is essentially

linear, with y increasing from a value of approximately

two for very thin elements. Since, cwer this frequency

range, the parabolic distribution (with y = 2) is very

close to the so-called shifted cosine distribution noted in

(1), there is a consistency with previous research on the

properties of thin linear antennas. We note also that -Y

is an increasing function of element radius, which

means that thicker elements have a more uniform cur-

rent distribution near the center with a steeper decrease

to zero near the ends. This is to be expected, since for

thicker elements the larger surface area at the ends will

carry a correspondingly larger total charge. In using an

equivalent filamentary element, we would then expect a

larger effective linear charge density near the ends and,

from the continuity equation.

(27)

~—–—— —— ——————— —.— —..

ALNG
G:”-@---”;

MICROWAVE ABSORBING MATERIAL

HORN EXCITER
, ;! !!

)
,,, :,,

o’; ‘

,>

Fig. 3. Experimental arrangement for measuring wavelength. Ele-
ments are supported in polyethylene tube.
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Fig. 5. Variation of ~ with element radius a, normalized
to half-length h.

a larger slope in the current distribution.
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IV. AN APPROXIMATE ANALYSIS RELATED

TO YAGI ANTENNAS

In this section we derive an approximate solution to

the dispersion equation for the limiting case of v/c= 1.

This regime is of particular interest in the wave theory

analysis of Yagi antennas since the closer v/c is to unity,

the more loosely bound will be the slow wave and the

larger the antenna “aperture.” The result is based on

the small argument behavior of KO(X), which is given by

[8]

Ko(x) = – log(cx) [1 + O(*’) ] (28)

where log C is related to Euler’s number, E =0.5772
. . . , by the expression [10]

log C= E–log2.

Using this approximate representation for KO in (23),

we determine the root u as

{

y+l
u = exp 0.11593 – —

7i2

[

t’
. A(’)+~ –’$2+ 1} (29)

7+1 (7+1)2

where the quantities on the right-hand side have been

defined earlier.

In Fig. 6 we have compared approximate and exact

solutions to the dispersion equation, for the thinnest

element, a = 0.0127 cm. It is clear that v/c need not be

significantly less than unity before there is a noticeable

disagreement. This is due to the dependence of v/c on u,

which is such that u increases so rapidly as v/c decreases

that the logarithmic approximation to KO quickly be-

comes inadequate. Nevertheless, (29) can be useful in

I

c.

EXACT
VALUES FOR Y=2.15°

t
# I o-MEASURED

: .,,~
58006000 6200 6400 6600 6800 7000

FREQUENCY IN MC

Fig. 6. Evaluation of approximate solution to dispersion equation
for thinnest element, a/hs .02.

estimating v/G or providing a starting point for a more

accurate calculation.

V. SUMMARY AND CONCLUSIONS

We have considered the characteristics of the lowest

order slow wave which can propagate along an infinite

array of parasitic linear elements. The investigation is

empirical in the sense that we have assumed a model for

the element current distribution including an undeter-

mined parameter, which is later adjusted to give the

best agreement between theoretical and measured val-

ues for phase velocity as a function of frequency.

We observe, just as in the case of linear antennas [3],

that while the shifted cosine current distribution may

be adequate to describe the behavior of very thin ele-

ments, a more uniform current is necessary for thicker

cylinders in order to obtain agreement with the experi-

mental results.

This is not to say that the current density departs

very significantly from the parabolic distribution -y =2,

even for the thickest elements, since the largest value of

~ was approximately y = 2.5. However, since the propa-

gation constant depends on the second derivative of

j(x), small errors become amplified in the estimate of (3.

We have, in this approach, exploited this behavior and,

starting with accurate results for ~, we have used the

sensitivity to precisely determine the best one-parame-

ter estimate for the current density.
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